Can silicon enhance tolerance to Fusarium wilt in banana?

ACPP APPS Darwin 2011 conference

Kevan Walter Jones
PhD Student
The University of Queensland
A Very Broad Overview

- Banana
- Fusarium
- Silicon
Banana

- *Musa* sp.
 - Important domestic and export crop
 - Seedless
 - Limited commercial varieties
Fusarium wilt of banana

- Soil borne fungal disease
 - *Fusarium oxysporum* f. sp. *cubense*

- Infects through roots into vascular tissue

- Distributed globally
 - Spreads slowly
 - But devastating
Fusarium wilt of Banana

- In Australia:
Can you stop Fusarium?

• Fusarium infection is usually a death sentence
 – Good quarantine has slowed the spread

• Genetic resistance

• Limited control in banana
 – Novel control?
The nutrient: Silicon

- **Element** silicon like N, P, K
 - Needed (?) by plants

- **In plants?**
 - Quasi-essential
 - Taken up from the soil; stored mostly in shoots

- **Abundant**
 - But silicon degraded soils are common
The benefits of silicon

• Biotic resistance
 – Increased tolerance to a wide range of pathogens/herbivores

• Abiotic benefits
 – Effects are subtle

• How does silicon induce disease resistance?
 – Physical? (armoured shell)
 – Biochemical (priming)
 – Something else entirely?

• Only presents benefits in presence of negative factor
Objectives

• **Obj1: Show that it works.**
 – Pot trials

• **Obj2: Locate silicon in the roots.**
 – X-ray microanalysis

• **Obj3: Determine what silicon is doing.**
Pot Trial

- Silicon dioxide (SiO_2)
- Inoculate with fusarium infested millet
- Internal symptoms at 14 weeks post inoculation
 - Scale (1 – 6)
Silicon enhances resistance in banana

Results

Disease Rating of *Foc* inoculated Cavendish Banana plants at 14 weeks post inoculation

- **Control**
 - 0% (6, worst disease)
 - 10% (5)
 - 20% (4)
 - 30% (3)
 - 40% (least disease)

- **Silicon**
 - 0% (6, worst disease)
 - 10% (5)
 - 20% (4)
 - 30% (3)
 - 40% (least disease)

Plant Treatment

Percentage of plants fitting disease category
Objectives

• Obj1: Show that it works.
 – Pot trial

• **Obj2: Locate silicon in the roots.**
 – X-ray microanalysis

• Obj3: Determine what silicon is doing.
X-ray mapping

- JEOL 6460 analytical SEM
- From banana plants grown with 10g/kg Si added
- Freeze fractured/freeze dried banana roots

http://www.uq.edu.au/nanoworld
EDS - X-ray Mapping

Results

Banana root silicon content

Silicon content (%)

- Epidermis
- Hypodermis
- Cortex
- Enodermis
- Stele

- **5**
- **10**
- **15**
- **20**
Objectives

- **Obj1:** Show that it works.
 - Pot trial

- **Obj2:** Locate silicon in the roots.
 - X-ray microanalysis

- **Obj3:** Determine what silicon is doing.
Objectives

Obj3: Determine what silicon is doing.

In Progress!
What does it all mean?

• Silicon in cortical tissues may be resisting fungal penetration.

• Aiding in structural integrity.

• Or priming defences.

• Or something else.
Expected Outcomes

– Does silicon work?
 • Cost?
 • Availability?
 • Effectiveness?

– Greatest applications in tissue culture/horticulture/agriculture?
Summary

- Silicon enhances tolerance to fusarium in banana
- Is located in root cortical tissue (at least)
- Work is ongoing
Acknowledgements

- Dr Elizabeth Aitken
- Dr Bronwen Cribb
- Dr Sharon Hamill
- Dr Leanne Forsyth
- Dr Jennifer Whan

- (soon to be Dr) Sam Fraser-Smith
- (soon to be Dr) Rachel Meldrum

Funding
- Horticulture Australia Limited (HAL) and the Australian Banana Growers’ Council (ABGC). Including Mort Johnston Scholarship