The influence of the local social profile on establishing grower and community collaboration

The case of fruit fly area-wide management

Heleen Kruger

PhD candidate
Background

- Foundations of modern biosecurity systems
 - International rules shape domestic rules
 - WTO & IPPC
 - Harmonisation, science-based
- Biosecurity is predominantly techno-centric
Biosecurity rules often assume spatial and social homogeneity.
Fruit Fly Area-Wide Management (FF AWM)

- Synchronised pest management across a geographical area, incl. towns
- Reduces pesticide need
- Industry increasingly need to lead FF AWM
Methods

- Queensland Fruit Fly (Qfly) (*Bactrocera tryoni*)
- Three case studies (Sept 2013 – March 2014)
 - In-depth, semi-structured interviews and focus groups (53 participants)
- Grower survey (Sept – Nov 2015)
 - 98 Growers
Theoretical background

- Literature on social ecological systems, collective action and adaptive co-management
- Collective action social dilemmas:
 - Free riding
 - Opting out
- Applied 8 principles for managing a common resource (Elinor Ostrom, 2004)
 - Trust
 - Fairness
Central Burnett, QLD

- Success story in Qfly endemic region
- Mainly mandarins, some table grapes and mangoes
- Trust relationships with three crop consultants
- Est. 40 growers, most keen to export
- Small towns – voluntary grower levies fund backyard treatments
- Grower contributions dwindling
- Domestic market access success
- Disappointment with international access
Riverina, NSW

- Socially challenged
- Strong past government support
- Citrus industry drives Qfly control since July 2013
- Large, diverse and fragmented horticulture industries
- Traditionally not Qfly endemic
- Large towns – asks residents to purchase inputs and maintain hosts
Young Harden, NSW

- Early days with AWM
- Local government and key cherry growers started Qfly management group in 2012
- Some stonefruit and grape growers
- Medium towns, increasing hobby farms
- Asks residents to purchase inputs and maintain hosts
Clearly defined boundaries (principle 1)

Geographical boundaries
- Well demarcated in all case studies

Participants
- Clear in Central Burnett – homogeneous industry and towns treatments funded
- Challenging in Riverina and Young Harden
Congruence between appropriation and provision (principle 2)

Amongst growers
- Market access uncertainty makes spread of benefits amongst growers unclear

Amongst growers and town residents
- Central Burnett – growers’ town treatment contributions based on their hectares of production
Collective choice arrangements (principle 3)

Growers
- Central Burnett – Close relationship between growers and crop consultants
- Riverina – Large, fragmented horticulture industries make communication and legitimacy difficult
- Young Harden – Strong informal bonds between growers

Town residents
- Town residents in Central Burnett get ‘free service’
Monitoring (principle 4)

Biophysical

- All case studies monitor Qfly numbers through traps

Cooperation

- Central Burnet – Regular crop consultant farm visits
- Riverina – Requesting packhouses to require growers to provide proof of Qfly management
Social enablers

- Homogenous local grower population
- High social capital
- Existing social mechanisms for monitoring
- Favourable ratio between supportive growers and risk contributors with little incentive to manage the pest
Ways forward

- **Adaptive co-management** – Learn and adjust
- ‘**Smart regulation**’ – Maintain trust and reduce transaction cost
- **Training to build local capabilities** – incl. negotiation, facilitation and conflict resolution
Conclusion

- The social profile influences the transaction cost - Consider during planning and resourcing
- Approaches need to be locally tailored, but regions can learn from each other
Questions?

Any questions?

For more information:
Email heleen.kruger@agriculture.gov.au

Acknowledgements:
Case study and survey participants
Prof. Rolf Gerritsen, Charles Darwin University
Prof. Darren Halpin, Australian National University
Dr. Susie Collins, Australian Department of Agriculture
Dr. Michael Cole, previously Australian Department of Agriculture