Discrimination between viable and dead *Xanthomonas fragariae* on strawberry host tissue by PCR

Tracey Immanuel, Rob Taylor, Stephanie Keeling, Brett Alexander (Julie Pattemore)
Plant Health and Environment Laboratory

Growing and Protecting New Zealand

www.mpi.govt.nz
Xanthomonas fragariae (ALS)

- Angular Leaf Spot on strawberry
- Disease affects foliage, calyx and developing daughter plants (vascular)
- Lower yields and/or causes plant death
- Secondary infections caused by exuding bacteria from lesions and water splash
- Infection of fruit calyx reduces quality and fruit marketability
Xanthomonas fragariae (ALS)

- Systemically infected plantlets are almost exclusively the primary source of inoculum in newly planted fields

http://strawberryplants.org/
EPPO lists *X. fragariae* as an A2 quarantine pathogen

- Pathogen absent from majority of strawberry growing countries in Europe, but has the potential to become established there.
X. fragariae (ALS) in New Zealand

- ALS first detected in NZ (1971) from strawberry plants in Auckland
 - progeny of plantlets imported from USA
- 1972, ALS detected from 3 more growers who had received progeny from the original 1971 import.
- Successful eradication program carried out in 1971/72

3. https://gd.eppo.int/taxon/XANTFR/distribution/NZ
More recently....

- In 2011, 2012, 2014 consignments of strawberry fruit showing disease symptoms (calyx) were intercepted by MPI inspectors.
- Samples sent to PHEL for identification.
- *X. fragariae* was detected by PCR at PHEL.
- PCR confirmed by isolation (7 days).
- Consignments were lost due to wait for isolation results.
Viability PCR for detection of live pathogens in a quarantine setting

- PCR techniques are routinely used for the detection of regulated pest in quarantine, biosecurity and food safety.
- One disadvantage is the inability of PCR to differentiate between positive results originating from live or dead microbial cells.
- Validation of test results and interpretation of biological risks can be difficult.
- Risk of “false positive” test results, especially for products that have already undergone treatment or other phytosanitary measures.
Viability PCR for detection of live pathogens in a quarantine setting

• Diagnosis of regulated pests must balance the needs of sensitivity, speed and biological relevance.

• Ambiguity in interpretation of PCR test results without live/dead cell determination can result in unnecessary biosecurity interventions and response type work, and imposition of unnecessary compliance costs.

• DNA intercalating dyes can reduce PCR signals from dead cells
Viability PCR concepts

• Cell membrane integrity is generally accepted as the differential between live and dead cells
 – some disinfection treatments can kill cells without disrupting cell membranes

• VIABILITY is the capacity to form progeny
 – a non-viable microbe is not a quarantine threat
 – a viable microbe is
- PMA penetrates dead cells with compromised membranes
- exposure to light cross links the dye to DNA
- inhibits PCR amplification.

Source – Biotium Inc
PMA pre-treatment of cells

- Add PMA dye to your sample and incubate in the dark (intercalation)
- Cross link PMA dye to DNA by exposing to blue light
- Lyse intact cells and extract DNA
- Conventional or real-time PCR
- Note: PMA is light and temperature sensitive and toxic. Adds approx. 1-2 hours to the PCR detection process.
• Some disinfection treatments can induce cell death without compromising membrane integrity.

Optimize the variables!

- Choice of DNA-intercalating dye (EMA, PMA or PEMAX)
- Dye concentration, incubation time and temperature
- Salt concentration and pH in the reaction
- Different kill treatments
- Photo-activation times
- Effect of different PCR amplicon length and target
- Bacterial cell concentration
- Sample complexity

PCR amplicon length

- The length of the target amplicon was one of the most important parameters.
- Works better with conventional PCR than real-time PCR.
- The amplification of longer sequences correlates with a higher probability of encountering a dye-DNA binding event.

Lanes 1-4 Psa dead cells;
5-6 Psa viable cells;
7-10 Xcc dead cells;
11-12 Xcc viable cells;
13 Xcc dead cells – no PMA;
14 Psa dead cells – no PMA;
15 water
Interpretation of weak positive test results can be a challenge

• The ideal situation is that no DNA is amplified from dead cells. However, this does not always occur.
• The dye or light can not penetrate all dead micro-organisms.
• Potential for false positives i.e. PMA does not completely suppress the amplification of DNA from dead cells.
• Presence of a low number of viable cells mixed with a population of dead cells.
A combination of qPCR tests to improve live/dead cell interpretation

<table>
<thead>
<tr>
<th>Samples</th>
<th>Viable colonies (KBC)</th>
<th>Test 1. qPCR Ct results (no PMA)</th>
<th>Test 2. qPCR Ct results after PMA treatment</th>
<th>Test 3. qPCR Ct results + kill treatment + PMA treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viable cells</td>
<td>+</td>
<td>20.83</td>
<td>21.43</td>
<td>35.64</td>
</tr>
<tr>
<td>Dead cells</td>
<td>-</td>
<td>20.39</td>
<td>35.86</td>
<td>36.85</td>
</tr>
<tr>
<td>Mixed cells</td>
<td>+</td>
<td>21.85</td>
<td>22.17</td>
<td>35.55</td>
</tr>
</tbody>
</table>

Test 1. detects all target microbial cells
Test 2. theoretically detects only viable cells
Test 3. differentiates between incomplete suppression of dead cells and mixed populations of viable and dead cells
Detection of viable *Xanthomonas fragariae* on strawberries

- Conventional PCR (amplicon 615bp) does not amplify PMA treated killed cells.

- qPCR (amplicon 129bp) suppresses amplification up to 9 cycles (5µM).

Legend:
- **Red** = viable cells with no PMA
- **Green** = viable cells with PMA
- **Dark blue** = killed cells with no PMA
- **Light blue** = killed cells with PMA
Detection of viable *Xanthomonas fragariae* on strawberries

- Conventional vPCR worked
 - amplicon 360bp
 - able to confirm detection of viable cells same day
- Viable qPCR did not work with the PMA pre-treatment
 - amplicon size 120bp
- *X. fragariae* confirmed by isolation, 7 days later on selective media
Conclusions

• This technique shows promise to differentiate between viable and nonviable microbial cells in quarantine samples.

• Interpretation of test results from environmental samples can be challenging but this can be overcome by including additional test controls.

• Potential applications include pathogen detection in import, export, post entry quarantine and response samples.

• Future work to investigate other applications for example, fungal targets
Acknowledgements

Funded by MPI Operational Research

Questions?

robert.taylor@mpi.govt.nz