Identification of candidate genes involved in resistance to myrtle rust in Riberry

Dr Peri Tobias – University of Sydney
Myrtle rust – causal agent - a biotrophic fungal pathogen, *Austropuccinia psidii*
Australian Myrtaceae plants and myrtle rust

Of Australian species tested 94% were susceptible (108/115) (Morin et al. 2012)

http://www.anbg.gov.au
Riberry is a commercially grown and harvested Australian Myrtaceae

Natural distribution of *Syzygium luehmannii* (Riberry / Lilly Pilly)
http://www.ala.org.au/

Fresh, dried or frozen it is used in sauces, jams, desserts, salads
Inoculated 103 plants: 75% resistant (29% hypersensitive response)

Fungal penetration (at 48 hrs) in both resistant and susceptible

But the pathogen is inhibited in resistant plants – programmed cell death at entry point and surrounding cells
Disease resistance determined by early recognition of pathogen

- Transcript studies identify genes expressed at a precise moment in time
- Expect that the plant trait is related to the expressed genes
- Look for differential gene expression between resistant and susceptible individuals
- Specifically look for recognition receptors that initiate global gene expression change for disease resistance

RNAseq Trinity *de novo* assembly results

Used CD-EST-2D-HIT to merge transcriptomes - **69,736 transcripts** (*Eucalyptus grandis* - 46,280 protein coding transcripts)

<table>
<thead>
<tr>
<th>Plant ID</th>
<th>Total trinity 'genes'</th>
<th>Total trinity transcripts</th>
<th>% GC</th>
<th>N10</th>
<th>N50</th>
<th>Median contig length</th>
<th>Total assembled bases</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>67,231</td>
<td>82,911</td>
<td>45.44</td>
<td>3700</td>
<td>1654</td>
<td>585</td>
<td>81,535,957</td>
</tr>
<tr>
<td>R2</td>
<td>90,033</td>
<td>115,368</td>
<td>44.85</td>
<td>3899</td>
<td>1696</td>
<td>542</td>
<td>111,654,245</td>
</tr>
<tr>
<td>R3</td>
<td>79,388</td>
<td>99,738</td>
<td>44.95</td>
<td>3547</td>
<td>1657</td>
<td>566</td>
<td>96,647,482</td>
</tr>
<tr>
<td>R4</td>
<td>75,463</td>
<td>95,357</td>
<td>45.09</td>
<td>3913</td>
<td>1733</td>
<td>560</td>
<td>94,918,068</td>
</tr>
<tr>
<td>S1</td>
<td>100,190</td>
<td>122,560</td>
<td>45.04</td>
<td>3602</td>
<td>1522</td>
<td>475</td>
<td>106,202,762</td>
</tr>
<tr>
<td>S2</td>
<td>76,751</td>
<td>98,166</td>
<td>45.05</td>
<td>3631</td>
<td>1604</td>
<td>558</td>
<td>93,434,753</td>
</tr>
<tr>
<td>S3</td>
<td>114,109</td>
<td>14,3816</td>
<td>44.31</td>
<td>4111</td>
<td>1751</td>
<td>504</td>
<td>137,624,114</td>
</tr>
<tr>
<td>S4</td>
<td>87,634</td>
<td>113,222</td>
<td>44.57</td>
<td>3909</td>
<td>1763</td>
<td>576</td>
<td>114,735,752</td>
</tr>
</tbody>
</table>
Expression differences in Resistant versus Susceptible plants

DE with EdgR (significance cut-off at FDR 0.01)

Pre-inoc.

n = 33

24h

n = 63

48h

n = 187
Susceptible (A) and Resistant (B) DE at 0 versus 48hrs

\[a = \text{zinc finger protein}, \ b,d = \text{carboxylesterase 12}, \ c = \text{Puccinia psidii ITS}, \ e = \text{zinc finger CCCH domain-containing protein}, \ f = \text{myosin heavy chain kinase}, \ g = \text{metalloendoproteinase}, \ h = \text{strigolactone esterase D14}, \ i = \text{auxin-regulated gene involved in organ size}, \ j = \text{uncharacterized}. \]
Resistant versus susceptible receptor expression

Lectin RLK homologs

NBS-LRR homologs
I-Tasser protein model (left): TIR-NBS-LRR receptor homologue **up-regulated** in **resistant** plants (closest homolog in *E. grandis* is within the *Ppr1* locus, chr 3)

ExPASy Prosites (below): Lectin Receptor-like Kinase homologue **only** present in **resistant** plants pre-inoculation. A transmembrane receptor with three domains; bulb lectin, PAN and protein kinase.
A. D14

B. PAL

C. R burst oxidase

D. Chitinase

E. Thaumatin-like

F. DRR

G. RLK

H. MybTF

I. LRR extensin
Results

• Resistant plants respond rapidly to inoculation.

• Susceptible plants appear to not recognise pathogen.

• Differential expression largely comprised of genes coding for transcription factors, enzymes in the secondary metabolite pathway, receptor-like kinases and defence.

• Two recognition receptors that look interesting.
Acknowledgements

Co-authors/supervisors
Professor Robert Park
Professor David Guest
Dr Carsten Külheim

Research funds
Rural Industries Research and Development Corporation (RIRDC)

Scholarships
Australian Government Post graduate Award
University of Sydney top up scholarship
RIRDC top up scholarship